职称/职务:副教授
E - mail: ljyong406@163.com
研究领域:微分方程数值解;动力系统保结构算法
来校时间:2012年
个人简介:
1980年6月24日出生,男,汉族,河北省南和县人。理学博士。 硕士生导师。美国《数学评论》(Mathematical Reviews)评论员。石家庄市青年联合会第十一届委员。在《Comput. Phys. Comm.》, 《Appl. Numer. Math.》, 《Numer. Algor.》等国际SCI学术期刊上发表论文近30篇。已主持完成国家自然科学基金项目1项,河北省自然科学基金项目2项,其它基金4项。现为《Appl. Numer. Math.》,《Numer. Algor.》和《Appl. Math. Comput.》等多种SCI期刊的审稿人。
教育背景:
博士,计算数学,南京大学,2009-2012
硕士,计算数学,南京大学,2007-2009
学士,数学与应用数学,河北科技大学,2001-2005
工作经历:
2012年—现在,河北师范大学数学与信息科学学院
2019年8月-2020年7月,新加坡国立大学数学系访问学者,合作导师:包维柱 教授
教学情况:
主讲本科生课程《高等数学》、《数值分析》等
主讲研究生课程《微分方程的数值解法》,《哈密顿系统的辛几何算法》,《工程数学》等
科研情况:
一、承担科研项目情况(按时间倒序排列)
7. 河北省自然科学基金面上项目(No.2021205036),2021-2023,主持;
6. 河北省高等学校科学技术研究项目青年基金(No.QN2019053),2019-2021,主持;
5. 河北师范大学杰出青年基金 (No.L2018J01),2018-2020,主持(已结项);
4. 国家自然科学基金青年基金(No.11401164),2015-2017,主持(已结项);
3. 河北省自然科学基金(No.A2014205136),2014-2016,主持(已结项);
2. 河北师范大学重点基金(No.L2013Z02),2014-2015,主持(已结项);
1. 河北师范大学博士基金(No.L2012B03),2013-2015,主持(已结项).
二.代表性论文(按时间倒序排列,*为通讯作者)
[33] Jiyong Li*, Optimal error estimate of a time-splitting Fourier pseudo-spectral scheme for the Klein-Gordon-Dirac equation, submitted
[32] Jiyong Li*, Liqing Zhu, An uniformly accurate exponential wave integrator Fourier pseudo-spectral method with structure-preservation for long-time dynamics of the Dirac equation with small potentials, submitted
[31] Xianfen Wang, Jiyong Li*, Convergence analysis of two conservative finite difference Fourier pseudo-spectral schemes for Klein-Gordon-Dirac system, submitted
[30] Shuo Deng, Jiyong Li*, A uniformly accurate exponential wave integrator Fourier pseudo-spectral method with energy-preservation for long-time dynamics of the nonlinear Klein-Gordon equation, Applied Numerical Mathematics, accepted (SCI)
[29] Jiyong Li*, Error analysis of a time fourth-order exponential wave integrator Fourier pseudo-spectral method for the nonlinear Dirac equation,International Journal of Computer Mathematics, 99 (2022) 791-807 (SCI)
[28] Jiyong Li*, Energy-preserving exponential integrator Fourier pseudo-spectral schemes for the nonlinear Dirac equation, Applied Numerical Mathematics, 172 (2022) 1–26(SCI)
[27] Jiyong Li*, Convergence analysis of a symmetric exponential integrator Fourier pseudo-spectral scheme for the Klein-Gordon-Dirac equation, Mathematics and Computers in Simulation, 190 (2021) 691-713 (SCI)
[26] Jiyong Li*, Tingchun Wang, Analysis of a conservative fourth-order compact finite difference scheme for the Klein-Gordon-Dirac equation, Computational and Applied Mathematics, 40 (2021) 114 (SCI)
[25] Jiyong Li*, Tingchun Wang, Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation, Applied Numerical Mathematics, 162 (2021) 150-170. (SCI)
[24] Jiyong Li, Extended multi-step Runge-Kutta-Nyström methods for oscillatory second-order systems, Journal of Computational and Applied Mathematics, submitted
[23] Yonglei Fang*, Xianfa Hu, Jiyong Li, Explicit pseudo two-step exponential Runge-Kutta methods for the numerical integration of first-order differential equations, Numerical Algorithms, 86 (2021) 1143-1163. (SCI)
[22] Jiyong Li*, Yachao Gao, Modified multi-step Nyström methods for oscillatory second-order initial value problems y''(t) = f(t,y(t),y'(t)), International Journal of Computer Mathematics, 98 (2021) 223-237.(SCI)
[21] Jiyong Li*, Xinyuan Wu, Energy-preserving continuous stage extended Runge-Kutta-Nyström methods for oscillatory Hamiltonian systems,Applied Numerical Mathematics, 145 (2019) 469-487. (SCI)
[20] Jiyong Li*, Yachao Gao, Energy-preserving trigonometrically-fitted continuous stage Runge-Kutta-Nyström methods for oscillatory Hamiltonian systems, Numerical Algorithms, 81 (2019) 1379-1401.(SCI)
[19] Jiyong Li*, Multi-step hybrid methods adapted to the numerical integration of oscillatory second-order systems, Journal of Applied Mathematics and Computing, 61 (2019) 155–184. (EI)
[18] Jiyong Li*, Shuo Deng, Xianfen Wang, Multi-step Nyström methods for general second-order initial value problems y''(t) =f(t,y'(t),y'(t)), International Journal of Computer Mathematics, 6 (2019) 1254-1277.(SCI)
[17] Jiyong Li*, Wei Shi, Xinyuan Wu, The existence of explicit symplectic ARKN methods with several stages and algebraic order greater than two, Journal of Computational and Applied Mathematics, 353 (2019) 204–209.(SCI)
[16] Jiyong Li*, Symplectic and symmetric trigonometrically-fitted ARKN methods, Applied Numerical Mathematics, 135 (2019) 381-395. (SCI)
[15] Jiyong Li*, Shuo Deng, Xianfen Wang, Extended explicit pseudo two-step RKN methods for oscillatory systems y'' +My = f(y), Numerical Algorithms, 78 (2018) 673-700.(SCI)
[14] Jiyong Li*, Xianfen Wang, Bin Wang, Trigonometrically-fitted symmetric two-step hybrid methods for oscillatory problems, Journal of Computational and Applied Mathematics, 344 (2018) 115-131. (SCI)
[13] Jiyong Li*, Trigonometrically fitted three-derivative Runge-Kutta methods for solving oscillatory initial value problems, Applied Mathematics and Computation, 330 (2018) 103-117. (SCI)
[12] Jiyong Li*, Trigonometrically-fitted multi-step hybrid methods for oscillatory special second-order initial value problems, International Journal of Computer Mathematics, 95 (2018) 979-997. (SCI)
[11] Jiyong Li*, Xianfen Wang, Ming Lu, A class of linear multi-step method adapted to general oscillatory second-order initial value problems, Journal of Applied Mathematics and Computing, 56 (2018) 561-591. (EI)
[10] Jiyong Li*, Shuo Deng, Trigonometrically fitted multi-step RKN methods for second-order oscillatory initial value problems,Applied Mathematics and Computation,320 (2018) 740–753. (SCI)
[9] Hao Zhang,Mingxue Shi,Jiyong Li,Bin Wang*, Diagonal implicit symmetric ERKN integrators for solving oscillatory reversible systems,International Journal of Applied and Computational Mathematics,3 (2017) 1229–1247.
[8] Jiyong Li*, Trigonometrically fitted multi-step Runge-Kutta methods for solving oscillatory initial value problems, Numerical Algorithms, 76 (2017) 237-258.(SCI)
[7] Jiyong Li*, Xianfen Wang, Multi-step Runge–Kutta–Nyström methods for special second-order initial value problems, Applied Numerical Mathematics, 113 (2017) 54–70. (SCI)
[6] Jiyong Li*, A family of improved Falkner-type methods for oscillatory systems, Applied Mathematics and Computation, 293 (2017) 345–357. (SCI)
[5] Jiyong Li*, Xianfen Wang, Multi-step hybrid methods for special second-order differential equations y''(t)=f (t,y(t)), Numerical Algorithms, 73 (2016) 711-733.(SCI)
[4] Jiyong Li, Xinyuan Wu*, Error analysis of explicit TSERKN methods for highly oscillatory systems, Numerical Algorithms 65 (2014) 465–483. (SCI)
[3] Jiyong Li, Xinyuan Wu*, Adapted Falkner-type methods solving oscillatory second- order differential equations, Numerical Algorithms, 62 (2013) 355–381. (SCI)
[2] Jiyong Li, Bin Wang, Xiong You, Xinyuan Wu*, Two-step extended RKN methods for oscillatory systems, Computer Physics Communications 182 (2011) 2486–2507. (SCI)
[1] Xinyuan Wu*, Xiong You, Jiyong Li, Note on derivation of order conditions for ARKN methods for perturbed oscillators, Computer Physics Communications 180 (2009) 1545–1549. (SCI)