Some Aspects of Projective Spectrum(三)
主 讲 人 :杨容伟 教授
活动时间:08月06日09时00分
地 点 :理科群1号楼D203室
讲座内容:
Finitely generated structures are important subjects of study invarious mathematical disciplines. Examples include tuples of linear operators, finite dimensional Lie algebras, finitely generated groups or C*-algebras, etc. It is thus a fundamental question whether there exists a universal mechanism in the study of these vastly dierent entities. In 2009, the notion of projective spectrum for several elements A1,...,An in a unital Banach algebra B was defined through the multiparameter pencil A(z)=z1A1+···+znAn, z∈.This conspicuously simple Definition turned out to have a surprisingly rich content. This series of three talks aims to give an introduction to this theory. Thet opics area sfollows.
1)Definitions, examples and som egeneral facts.
2)Maurer-Cartan form and thet opology of resolvent set.
3)Hermitian metrics and geometric properties.
4)Tuple of compact operators and kernel bundle.
5)Application to group representations and a link with complex dynamics.
主讲人介绍:
杨容伟教授于1998年5月获得美国纽约州立大学石溪分校博士学位,1998年9月至2001年7月在美国乔治亚大学攻读博士后,现为美国纽约州立大学奥尔巴尼分校数学统计系教授。其主要研究方向为泛函分析和多变量算子理论,研究兴趣包括:多元算子理论、泛函分析、多变量复分析、群论、复几何、算子代数等。在J. Funct. Anal.,Indiana Univ. Math. J., J. Operator Theory, Integral Equations Operator Theory等国际知名期刊上发表论文50余篇。